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BWAS/PNRS to model the brain-behavior

• Motivation

• Description of the method

• Using BWAS we can disambiguate between focal or globally distributed 
effects

• Detailed description of the figures and tables we use to validate every step 
of the method

• Other potential applications and future directions
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Neuroimaging is a very important tool in 
clinical practice

Signs of cerebral small vessel disease. From Inzitari et al, BMJ. 

2009 Jul 6;339:b2477. doi: 10.1136/bmj.b2477

https://betterhealthwhileaging.net/cerebral-small-vessel-disease/

Signs of cerebral small vessel disease

Presurgical MRI of 3 patients included axial T1 postcontrast A, E, I, axial 

FLAIR B, F, J, axial DWI C, G, K, and axial ASL perfusion D, H, L sequences.

Villanueva-Meyer, et al 2017.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581219/

Diffuse astrocytic tumors



Associations between brain function and behavior, 
however, are dominated by small effects. 

Given their small effects, it 
is hard to identify a “bright 
spot” in the brain indicative 
of a given behavior

I see, 

rumination and 

internalizing 

behavior

Aha, an 

extrovert



One strategy is to pool data together from several 
participants to increase the signal to noise ratio and find 
those associations at the group level.



Following this approach, several groups have reported 
associations between atypical brain connectivity and 
different mental and neurological disorders.



Most of the studies, however, are 
underpowered to model small effects

Towards Reproducible Brain-Wide Association Studies
Scott Marek, Brenden Tervo-Clemmens, Finnegan J. Calabro, David F. Montez, Benjamin 
P. Kay, Alexander S. Hatoum, Meghan Rose Donohue, William Foran, Ryland 
L. Miller, Eric Feczko, Oscar Miranda-Dominguez, Alice M. Graham, Eric A. Earl, Anders 
J. Perrone, Michaela Cordova, Olivia Doyle, Lucille 
A. Moore, Greg Conan, Johnny Uriarte, Kathy Snider, Angela Tam, Jianzhong Chen, Dillan 
J. Newbold, Annie Zheng, Nicole A. Seider, Andrew N. Van, Timothy O. Laumann, Wesley 
K. Thompson, Deanna J. Greene, Steven E. Petersen, Thomas E. Nichols, B.T. Thomas Yeo, Deanna 
M. Barch, Hugh Garavan, Beatriz Luna, Damien A. Fair, Nico U.F. Dosenbach



For example, a small sample of 25 participants can 
lead to strong positive correlations

Marek and Tervo-Clemmens, et. al.
Towards Reproducible Brain-Wide Association Studies

r = 0.5

Predicting  cognitive ability 
using functional connectivity



Another sample of the same size can lead to a 
strong negative correlation

r = - 0.5

Marek and Tervo-Clemmens, et. al.
Towards Reproducible Brain-Wide Association Studies



Or even to a null correlation

r = 0.0

Marek and Tervo-Clemmens, et. al.
Towards Reproducible Brain-Wide Association Studies



You need a sample size in the order of thousands 
to characterize the real strength of the association

Marek and Tervo-Clemmens, et. al.
Towards Reproducible Brain-Wide Association Studies



Underpowered studies and bias towards 
overreporting positive findings (among other 
factors) have led to a crisis in reproducibility



https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

Weak associations between variables 
are very common in science.

In genetics, for example, several 
illnesses are associated with changes 
in either one or many genes (and 
frequently coupled with 
environmental factors)

In genetics, a “polygenic risk score” 
is a method to determine the risk of 
developing a disease, based on the 
total number of changes related to 
the disease Each red “v” represents variants in an individual’s genome 

that is associated with coronary artery disease. Each 
smaller gray “v” is a variant that is also present in the 
person’s genome but is not implicated in disease.



In that field, a large reference sample (~102 - 1010), whose sample size 
depends on the frequency of the genetic variant to be identified, is used 
to characterize the association between gene expression and disease

Figure 1. Minimum Sample Sizes for Detecting Trait-SNP 
Associations from Imputed and WGS Data

Visscher, Peter M., Naomi R. Wray, Qian Zhang, Pamela Sklar, Mark I. McCarthy, Matthew A. Brown, and Jian Yang. 2017. “10 Years of GWAS Discovery: Biology, 
Function, and Translation.” American Journal of Human Genetics 101 (1): 5–22.



They model each individual effect in the large reference sample to 
obtain a Genome Wide Association

Those are known as 
Genome Wide 
Association Studies, or 
GWAS

GWAS

Genes/Disease

Reference population



Resulting models can be used to predict 
the risk of a given disease in individuals

Based on the GWAS, a person’s gene 
expression is used to calculate a 
polygenic risk score for a disease PRS: Polygenic 

Risk Scores

GWAS

Genes/Disease

PRS
Risk of this 
person for 

Disease

Personalized medicine

Reference population



Zhao among others adapted that 
methodology to neuroimaging

Zhao, Weiqi, Clare E. Palmer, Wesley K. Thompson, Bader Chaarani, Hugh P. Garavan, B. J. Casey, Terry L. Jernigan, 
Anders M. Dale, and Chun Chieh Fan. 2020. “Individual Differences in Cognitive Performance Are Better Predicted 
by Global Rather Than Localized BOLD Activity Patterns Across the Cortex.” Cerebral Cortex  31 (3): 1478–88.



We are using the same approach
Brain-Wide Association Studies (BWAS )| PolyNeuro Risk Scores (PNRS) 

We assume that behavioral traits 
emerge from the cumulative 
effect of functional motifs 
distributed globally across the 
brain

GWAS

Genes/Disease

BWAS
Brain 

function/Behavior

PRS
Risk of this 
person for 

Disease

Polyneuro Risk Score 
(PNRS )

Behavioral score given  
brain function

Personalized medicine

Reference population



This is a two-step process:



1st, a Brain-Wide Association is estimated 
using a large reference sample

Massive Univariate models are fit 
to relate functional connectivity  
to behavior

Models are combined to estimate 
the beta-weights of the BWAS

BWAS
Brain 

function/Behavior

Reference population

ො𝑦𝑣 = 𝑥𝑣𝛽𝑣 + 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒1𝛽𝑣,1 + 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒2𝛽𝑣,2 +⋯,



2nd, resulting models are selectively combined to 
estimate “behavioral” risk scores in individuals
(PolyNeuro Risk Score, PNRS)

Observed  behavior

P
re

d
ic

te
d

  b
eh

av
io

r

BWAS
Brain 

function/Behavior

Polyneuro Risk Score 
(PNRS )

Behavioral score given  
brain function

Personalized medicine

Reference population

𝐯 are the

preselected

weights



Example: Finding associations between 
functional connectivity and cognitive ability
Dataset: ABCD                  .

• ABCD (N= 11,877)
• Data split in 2 halves (5,786 

each)
ABCD Reproducible Matched Samples 
(ARMS [1])

• Covariates
• site, gender, combined race, 

latin, highest parent education, 
interview age

• Motion censoring
• Frame displacement <= 0.2
• Time: 8 minutes

• Surviving participants
• ARMS-1: 3,383
• ARMS-2: 3,286

[1] Feczko, et al, 2021



Brain features: Resting-State Functional 
Connectivity
For each participant                 
.
• Parcellated functional 

connectivity data using 
Gordon’s ROI set [2]

• 352 ROIs
• 333 cortical areas + 19 

subcortical
• 14 functional networks

• Resulting number of 
connections (Brain features)

• 61,776 connections
• Grouped in 105 functional 

network pairs
• Aud-Aud
• Aud –DoA
• …
• Sub-Sub

[2] Gordon, et al, 2014

Cortical projection of the Gordon ROI set in a very inflated brain Parcellated connectivity matrix



Behavior: Cognitive Ability

• PCA on neurocognitive assessments [3]
• NIH toolbox (Picture Vocabulary; Flanker Test; 

List Sort Working Memory Task; Dimensional 
Change Card Sort Task; Pattern Comparison 
Processing Speed Task; Picture Sequence 
Memory Task; Oral Reading Test)

• Rey Auditory Verbal Learning Task; 
• Little Man Task percent correct.

• Top 3 components explained most of the 
observed variance

• Cognitive ability: 21.1%
• Oral Reading, Picture Vocabulary, and List Sort 

Working Memory tasks

• Executive function: 20.4%
• Learning and memory: 18.05

[3] Thompson, et al, 2019



• In this example we first obtained 
a BWAS using data from the first 
half of the ABCD set

• We controlled for 
• site, 

• gender, 

• combined race, 

• latin

• highest parent education

• interview age

BWAS
Brain 

function/Behavior

Polyneuro Risk Score 
(PNRS )

Behavioral score given  
brain function

Personalized medicine

Reference population



The first result of the BWAS corresponds to 
the β-weights per connection

BWAS
Brain 

function/Behavior

Reference population

ො𝑦𝑣 = 𝑥𝑣𝛽𝑣 + 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒1𝛽𝑣,1 + 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒2𝛽𝑣,2 +⋯,

Coefficient’s value

Those weights (N=61,776) 
can be grouped per 
functional network pair



Each weight explains a given amount of variance in the 
training sample and has a corresponding p-value

Coefficient’s value 100 X R2 - log10(p)

Gordon’s ROI set



Visualization can be simplified by showing the weights 
and the explained variance in the same figure

Results can be 
summarized as follows

Coefficient’s value 100 X R2 - log10(p)

Gordon’s ROI set



Strength of each connection can also be 
shown using Manhattan plots

Negative p-values are 
shown in logarithmic 
scale

Connections are color-coded by 
functional network pair

Horizontal lines 
indicate different 
thresholds based on p-
values

Small networks are combined 
(additional figures show all the 
connections and only the small 
networks)

- log10(p)



We also have “Relative Contribution” Figures

• There is one row per threshold
• Each block shows the relative contribution of each network per 

threshold
• Calculated as 100 x (connections per network) / total count of 

connections at that threshold
• Blocks are color-coded by functional network pair



Relative Contribution Figures can help to visualize 
how stable the contribution of each network is 
across thresholds DoA and Vea is diluted at 

higher thresholds



In contrast, the relative contribution of Def and 
SMm (among others) is stable across thresholds



We can also identify at which threshold all the 
networks are present

All the networks 
are present



Let’s apply this!

Motivation

Description of the method

Using BWAS we can disambiguate between focal or globally distributed effects

Detailed description of the figures and tables we use to validate every step of the 
method

Other potential applications and future directions



Manhattan-plots and Weights-and-Explained-variance 
figures can help with that (at least qualitatively)



Compare the following results from two 
different BWAS

Bigger decay in predictive 
power, suggesting a more 
focalized effect



Height of the “towers” can also help to 
identify focalized versus global effects



Height of the “towers” can also help to 
identify focalized versus global effects

~ Small delta across networks 
(distributed effect)



Height of the “towers” can also help to 
identify focalized versus global effects

~ Small delta across networks 
(distributed effect)

Large delta 
across networks
(focal effect)



You can see how prominent each tower is at each 
threshold and how its relevance decays as more 
connections are added



Now, let’s move to the second step of the 
approach, which is predicting scores in an 
independent sample
Beta-weights are selected by top connection or by networks



Do you remember this slide?



Beta-weights are selected by top connections (predictive power 
within the training sample) or by networks 



PNRS are calculated for each participant in the independent 
sample 

• For each threshold (or network), 
a PNRS is calculated for each 
participant

• Pearson’s correlation is 
calculated between the PNRS 
and the corresponding score of 
cognitive ability

Cognitive 
ability

PNRS of 
Cognitive 

ability



We generate scatter plots for each threshold

Just scores



Showing a density map

Showing a 
density map



Site

Showing covariates color-coding categorical values or using 3D 
scatter plots for continuous values

Race

Latin

Gender



We also generate scatter plots for each functional network pair

Race

Latin

Gender

Site



Results

First, we will use the best connection 
in the training sample to predict 
PNRS in the independent sample

Reference sample



The best feature can only predict ~0.4% of the observed 
variance in the independent sample!

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections
Reference sample



I will switch figures to facilitate the discussion

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections
Data sorted by the absolute 
value of the weights

Reference sample



Now the question is, how much variance any 
other connection explains?

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections
~0 to ~4%

Reference sample Independent sample



What happen when we add more features?

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections

We can explain more 
variance!



Combined connections explain more variance than any 
individual connection

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections Combined connections 
explain more variance than 
any individual connection
(8.267 > 4%)



Peak  at 10%

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections



Summary

• There is a decrease in predictive 
power across samples

• Adding connections improves 
the predictive power (~15.6% 
explained variance)



To test the specificity of the predictive power, we 
generate null data by selecting connections (or 
networks) randomly

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

Null data (N replicas)
for 1:N 
Connection (or network) order is 
randomized

for 1: threshold (or 
network)

• Predict scores
• Correlation 

between predicted 
and real scores

By top connections



Data visualization

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

Predicted scores
Boxplot showing distributions of 
null data
• Circle: median
• Wide line, percentiles 25-75
• Thin line, percentiles 2.5-97.5

By top connections



We also generate a figure showing the 
% Explained Variance

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections



Using this figures, we can quickly visualize which threshold leads to the 
largest explained variance. 
You can also see potential overlaps with any other set of random 
connections

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections

Overlap might 
suggest global 
versus focal effect



We can also identify the regions where no other set of 
connections lead to the same predictive power

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections



We also generate cifti files to make the corresponding 
brain figures

By top connections

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

Top 10% brain features

All the brain features

Gordon’s ROI set



In addition, we also calculate the predictive power of 
each functional network pair

By networks

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

Top feature 0.062 0.389

top 00.1% features 0.288 8.267
top 00.2% features 0.330 10.916
top 00.5% features 0.347 12.045
top 01.0% features 0.361 13.039
top 02.0% features 0.373 13.929

top 05.0% features 0.392 15.328

top 10.0% features 0.396 15.681
top 25.0% features 0.393 15.438
top 50.0% features 0.387 14.997
top 100.0% features 0.385 14.852

By top connections

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

1) DoA and SMm 0.280 7.863

2) Def and non 0.242 5.837
3) DoA and non 0.232 5.404
4) CiP and FrP 0.228 5.217
5) Def and VeA 0.227 5.148
6) Def and FrP 0.223 4.990

7) CiO and DoA 0.213 4.517

8) Sub and VeA 0.212 4.475
9) SMm and VeA 0.211 4.469
10) SMm and SMm 0.210 4.425
11) DoA and VeA 0.209 4.369

…
105) Aud and Sal -0.079 0.624



And the corresponding visuals

By networks

Connections
Pearson’s 

correlation

% Explained 
Variance

(100 x R2)

1) DoA and SMm 0.280 7.863

2) Def and non 0.242 5.837
3) DoA and non 0.232 5.404
4) CiP and FrP 0.228 5.217
5) Def and VeA 0.227 5.148
6) Def and FrP 0.223 4.990

7) CiO and DoA 0.213 4.517

8) Sub and VeA 0.212 4.475
9) SMm and VeA 0.211 4.469
10) SMm and SMm 0.210 4.425
11) DoA and VeA 0.209 4.369

…
105) Aud and Sal -0.079 0.624



Summary

• BWAS/PNRS can leverage small 
effects across the brain

• Using this approach, we can 
identify if associations between 
brain function and behavior are 
focal or globally distributed

GWAS

Genes/Disease

BWAS
Brain 

function/Behavior

PRS
Risk of this 
person for 

Disease

Polyneuro Risk Score 
(PNRS )

Behavioral score given  
brain function

Personalized medicine

Reference population



Other uses of BWAS

Study associations 
between PNRS of 
behavior and 
disease severity

01
Combine several 
PNRS to predict 
scores of disease 
severity

02
Combine several 
PNRS to study 
heterogeneity

03



Future directions

• Brain features here were 
connectivity matrices calculated 
via Pearson’s correlations. We can 
use instead connectotyping [1,2])

• Add regularization to the 
estimation of the beta-weights, 
such as partial least squares 
regression [3,4]

[1] Miranda-Dominguez, O., Mills, B. D., Carpenter, S. D., Grant, K. A., 
Kroenke, C. D., Nigg, J. T., & Fair, D. A. (2014). Connectotyping: 
model based fingerprinting of the functional connectome. PloS
One, 9(11), e111048. 
https://doi.org/10.1371/journal.pone.0111048

[2] Miranda-Dominguez, O., Feczko, E., Grayson, D. S., Walum, H., 
Nigg, J. T., & Fair, D. A. (2018). Heritability of the human 
connectome: A connectotyping study. Network Neuroscience 
(Cambridge, Mass.), 2(2), 175–199. 
https://doi.org/10.1162/netn_a_00029

[3] Miranda-Domínguez, Ó., Ragothaman, A., Hermosillo, R., Feczko, 
E., Morris, R., Carlson-Kuhta, P., Nutt, J. G., Mancini, M., Fair, D., 
& Horak, F. B. (2020). Lateralized Connectivity between Globus 
Pallidus and Motor Cortex is Associated with Freezing of Gait in 
Parkinson’s Disease. Neuroscience, 443, 44–58. 
https://doi.org/10.1016/j.neuroscience.2020.06.036

[4] Silva-Batista, C., Ragothaman, A., Mancini, M., Carlson-Kuhta, P., 
Harker, G., Jung, S. H., Nutt, J. G., Fair, D. A., Horak, F. B., & 
Miranda-Domínguez, O. (2021). Cortical thickness as predictor 
of response to exercise in people with Parkinson’s disease. 
Human Brain Mapping, 42(1), 139–153. 
https://doi.org/10.1002/hbm.25211

https://doi.org/10.1371/journal.pone.0111048
https://doi.org/10.1162/netn_a_00029
https://doi.org/10.1016/j.neuroscience.2020.06.036
https://doi.org/10.1002/hbm.25211


Thank you!

Art at the MIDB



Brain Wide Associations (BWAS) to model the 
link between brain features and behavior.
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